On the rank preserving property of linear sections and its applications in tensors

Yang Qi

Department of Mathematics, University of Chicago

Joint work with Lek-Heng Lim

October 8, 2019

Geometria Algebrica e Applicazioni

Dipartimento di Matematica e Informatica, Università di Firenze

Overview

Introduction

X-rank decomposition

General rank preserving property

Rank preserving property

Rank decomposition

Let V_1, \ldots, V_n be vector spaces over \mathbb{K} , and $T \in V_1 \otimes \cdots \otimes V_n$.

Definition

The *rank*, denoted by rk(T), of a tensor T is the minimum integer r such that

$$T=\sum_{i=1}^{r}u_{i,1}\otimes\cdots\otimes u_{i,n}$$

where each vector $u_{i,j} \in V_j$.

Such a decomposition $T = \sum_{i=1}^{r} u_{i,1} \otimes \cdots \otimes u_{i,n}$ is called a *rank-r decomposition*.

Symmetric rank decomposition

Let V be a vector space over \mathbb{K} , and $T \in S^d V$ be a symmetric tensor.

Definition

The symmetric rank, denoted by $rk_S(T)$, of T is the minimum integer r such that

$$T = \sum_{i=1}^{r} \lambda_i u_i^d$$

where each vector $u_i \in V$ and each $\lambda_i \in \mathbb{K}$.

Such a decomposition $T = \sum_{i=1}^{r} u_i^d$ is called a *symmetric rank-r* decomposition, or a *Waring decomposition*.

Vandermonde rank decomposition

Let V be an (n + 1)-dimensional vector space. Fix a basis $\{e_1, \ldots, e_{n+1}\}$ for V. A symmetric tensor

$$H \coloneqq \sum_{1 \leq i_1, \dots, i_d \leq n+1} H_{i_1 \dots i_d} e_{i_1} \cdots e_{i_d} \in S^d V$$

is called *Hankel* if there is a vector $h := (h_0, \ldots, h_{nd})$ such that

$$H_{i_1\ldots i_d}=h_{i_1+\cdots+i_d-d}.$$

H is said to have a *Vandermonde rank decomposition* if, after identifying V with S^nW for some 2-dim vector space W, H has the form

$$H = \sum_{i=1}^{r} \lambda_i (w_i^{\otimes n})^{\otimes d}, \qquad (1)$$

where $w_1, \ldots, w_r \in W$. The minimum *r* is called the *Vandermonde rank* of *H*.

A symmetric tensor H is Hankel if and only if H has a Vandermonde rank decomposition.

Border rank

The set of tensors with rank $\leq r$ is not necessarily closed when r > 1.

Definition

The *border rank*, denoted by brk(T), of a tensor T is the minimum integer r such that T is a limit of rank-r tensors.

Definition

The symmetric border rank, denoted by $brk_S(T)$, of a symmetric tensor T is the minimum integer r such that T is a limit of symmetric rank-r tensors.

Conjectures on rank decompositions

Conjecture (Comon)

Given any symmetric tensor $T \in S^d V$,

$$\mathsf{rk}_{\mathcal{S}}(\mathcal{T}) = \mathsf{rk}(\mathcal{T}).$$

Conjecture (Strassen)

Given vector spaces $V_1, \ldots, V_n, W_1, \ldots, W_n$ such that $V_i \cap W_i = \{0\}$ for each *i*, and tensors $A \in V_1 \otimes \cdots \otimes V_n$ and $B \in W_1 \otimes \cdots \otimes W_n$. Then

$$\mathsf{rk}(A+B) = \mathsf{rk}(A) + \mathsf{rk}(B),$$

where $A + B \in (V_1 \oplus W_1) \otimes \cdots \otimes (V_n \oplus W_n)$.

Conjectures on rank decompositions continued

Conjecture (symmetric version of Strassen's conjecture)

Given vector spaces V and W such that $V \cap W = \{0\}$, and tensors $A \in S^d V$ and $B \in S^d W$. Then

$$\mathsf{rk}_{\mathcal{S}}(A+B) = \mathsf{rk}_{\mathcal{S}}(A) + \mathsf{rk}_{\mathcal{S}}(B),$$

where $A + B \in S^d(V \oplus W)$.

Conjecture (Nie – Ye)

For a general Vandermonde rank-r Hankel tensor, its symmetric rank and rank are also r.

Overview

Introduction

X-rank decomposition

General rank preserving property

Rank preserving property

X-rank decomposition

Let $X \subset \mathbb{P}V$ be a nondegenerate projective variety.

- ▶ nondegenerate (X is not contained in a hyperplane) \implies for any $v \in V$, $v = x_1 + \cdots + x_m$ for some $x_1, \ldots, x_m \in \widehat{X}$.
- ▶ projective $\implies v = x_1 + \dots + x_m$ instead of $v = c_1x_1 + \dots + c_rx_m$ for some coefficients c_1, \dots, c_m .

Definition (Zak)

For $v \in V$, the *X*-rank of v, denoted by $rk_X(v)$, is the minimum integer r such that

$$v=x_1+\cdots+x_r,$$

where $x_1, \ldots, x_r \in \widehat{X}$.

Border and Generic X-rank

Definition

For $v \in V$, the *X*-border-rank of v, denoted by $brk_X(v)$, is the minimum integer r such that v is a limit of *X*-rank-r points.

Definition

Over \mathbb{C} , there is a unique X-rank r such that the set of X-rank-r points contains a Zariski open subset of V, which is called the *generic* rank.

Examples

The Segre variety is defined to be the image of

Seg :
$$\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n \to \mathbb{P}(V_1 \otimes \cdots \otimes V_n)$$

($[v_1], \ldots, [v_n]$) $\mapsto [v_1 \otimes \cdots \otimes v_n].$

The Veronese variety is defined to be the image of

$$\nu_d: \mathbb{P}V \to \mathbb{P}S^d V, \quad [v] \mapsto [v^d].$$

Example

- "The tensor rank in $V_1 \otimes \cdots \otimes V_n$ " = Seg($\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n$)-rank.
- "The symmetric rank in $S^d V$ " = $\nu_d(\mathbb{P}V)$ -rank.
- ▶ the generic rank $r_g(\text{Seg}(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \times \mathbb{P}^{n-1})) = \lceil \frac{n^3}{3n-2} \rceil$ if $n \neq 3$.
- $\operatorname{rk}_X(v) \geq \operatorname{brk}_X(v)$.

Join Variety

Geometric definition:

For projective varieties $X_1, \ldots, X_r \subseteq \mathbb{P}V$ over \mathbb{K} , let \widehat{X}_i denote the affine cone of X_i .

Definition

The join map is defined by

$$J: \widehat{X}_1 \times \cdots \times \widehat{X}_r \to V, \quad (x_1, \dots, x_r) \mapsto x_1 + \cdots + x_r.$$

The Zariski closure of the image $J(\hat{X}_1 \times \cdots \times \hat{X}_r)$ in V is the affine cone of some projective variety, which is denoted by $J(X_1, \ldots, X_r)$, and called the *join variety* of X_1, \ldots, X_r .

Join of ideals

Algebraic definition:

Definition

Given ideals $I_1, \ldots, I_r \subseteq \mathbb{K}[\mathbf{x}] = \mathbb{K}[x_1, \ldots, x_n]$, the *join* of I_1, \ldots, I_r is the elimination ideal

$$\left(I_1(\boldsymbol{y}_1) + \dots + I_r(\boldsymbol{y}_r) + \langle x_j - \sum_{i=1}^r y_{ij} \mid 1 \leq j \leq n \rangle\right) \cap \mathbb{K}[\boldsymbol{x}]$$

where $\mathbf{y}_i = (y_{i1}, \dots, y_{in})$, and $I_i(\mathbf{y}_i)$ denotes the ideal I_i with x_j substituted by y_{ij} .

Secant varieties

Definition

When $X_1 = \cdots = X_r = X$, we denote $J(X_1, \ldots, X_r)$ by $\sigma_r(X)$, and call it the *r*th secant variety of X.

Definition

When X is an irreducible projective variety,

$$\sigma_r(X) = \bigcup_{x_1, \dots, x_r} \operatorname{Span}\{x_1, \dots, x_r\}.$$

 x_1, \ldots, x_r general in X

Connection with tensors

Let $X = Seg(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n)$ be the Segre variety, which is defined by:

Seg:
$$\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n \to \mathbb{P}(V_1 \otimes \cdots \otimes V_n)$$

($[v_1], \dots, [v_n]$) $\mapsto [v_1 \otimes \cdots \otimes v_n].$

Then over \mathbb{C} , $\widehat{\sigma_r(X)}$ is the set of tensors whose border ranks are $\leq r$. Similarly, let $Y = \nu_d(\mathbb{P}V)$ be the Veronese variety, which is defined by

$$\nu_d: \mathbb{P}V \to \mathbb{P}S^d V, \quad [v] \mapsto [v^d].$$

Then over \mathbb{C} , $\widehat{\sigma_r(Y)}$ is the set of symmetric tensors with symmetric border rank $\leq r$.

Overview

Introduction

X-rank decomposition

General rank preserving property

Rank preserving property

Rank preserving property

Let $X \subseteq \mathbb{P}V$ be a nondegenerate irreducible projective variety, and $L \subset \mathbb{P}V$ be a linear subspace. Let $Y := (X \cap L)_{red}$, the reduced subscheme of $X \cap L$.

Definition (Buczyński–Ginensky–Landsberg)

Y is said to have the rank-r preserving property for a fixed r if

the linear span Span { Y } is L;

•
$$\operatorname{rk}_X(v) = r$$
 for all $v \in L$ with $\operatorname{rk}_Y(v) = r$.

Definition

Y is said to have the general rank-r preserving property if

• $\mathsf{rk}_X(v) = r$ for a general rk_Y -r point $v \in L$.

Similarly we can define the *border rank-r preserving property* by replacing rk with brk.

Examples

Conjecture (Comon)

Let

$$X = \text{Seg}(\mathbb{P}V^d), \quad L = \mathbb{P}(S^d V), \quad Y = X \cap L = \nu_d(\mathbb{P}V).$$

Does Y have the symmetric rank-r preserving property?

Conjecture (Strassen)

Let

$$X = \operatorname{Seg}(\mathbb{P}(V \oplus W)^d), \quad L = \mathbb{P}(V^{\otimes d} \oplus W^{\otimes d}),$$
$$Y = X \cap L = \operatorname{Seg}(\mathbb{P}V^d) \cup \operatorname{Seg}(\mathbb{P}W^d).$$

Does Y have the rank-r preserving property?

More examples

Conjecture (symmetric version of Strassen's conjecture)

Let

$$X =
u_d(\mathbb{P}(V \oplus W)), \quad L = \mathbb{P}(S^d V \oplus S^d W),$$

 $Y = X \cap L =
u_d(\mathbb{P}V) \cup
u_d(\mathbb{P}W).$

Does Y have the symmetric rank-r preserving property?

Conjecture (Nie – Ye)

Let

$$\begin{aligned} X_1 &= \nu_d(\mathbb{P}V), \quad X_2 = \mathsf{Seg}(\mathbb{P}V^{\times d}), \quad L = \mathbb{P}(S^{dn}W), \\ Y &= X_1 \cap L = X_2 \cap L = \nu_{dn}(\mathbb{P}W), \text{ where dim } W = 2 \end{aligned}$$

Does Y have the general (symmetric) rank-r preserving property.

Rank preserving property often fails

Theorem (Nie – Ye)

There is a Hankel tensor whose Vandermonde rank is greater than its symmetric rank.

Theorem (Schönhage)

There are $T_1 \in V_1 \otimes V_2 \otimes V_3$ and $T_2 \in W_1 \otimes W_2 \otimes W_3$ such that

 $brk(T_1 \oplus T_2) < brk(T_1) + brk(T_2).$

Rank preserving property often fails continued

Theorem (Shitov)

There is a symmetric tensor T such that $rk(T) < rk_S(T)$.

Theorem (Shitov)

There are $T_1 \in V_1 \otimes V_2 \otimes V_3$ and $T_2 \in W_1 \otimes W_2 \otimes W_3$ such that

$$\mathsf{rk}(T_1 \oplus T_2) < \mathsf{rk}(T_1) + \mathsf{rk}(T_2).$$

Reasonable to consider the general rank preserving property of Y, i.e.,

 $\sigma_r(Y) \not\subseteq \sigma_{r-1}(X).$

Assumptions on $\mathbb K$

Theorem

Let $X \subseteq \mathbb{P}V$ be a variety where the set $X(\mathbb{K})$ of \mathbb{K} -rational points of X is Zariski dense over a perfect field \mathbb{K} . Then

$$\sigma_r(X \times_{\mathbb{K}} \overline{\mathbb{K}}) = \sigma_r(X) \times_{\mathbb{K}} \overline{\mathbb{K}}.$$

Lemma

Assume \mathbb{K} is of characteristic 0, $X(\mathbb{K})$ is dense, and Y is irreducible. When $r \leq r_g(Y)$, if

$$\sigma_{r}(Y \times_{\mathbb{K}} \overline{\mathbb{K}}) \not\subseteq (\sigma_{r-1}(X \times_{\mathbb{K}} \overline{\mathbb{K}}) \cap L \times_{\mathbb{K}} \overline{\mathbb{K}})_{\mathsf{red}},$$
(2)

then Y has the general rank-r preserving property.

We will assume $\mathbb K$ is algebraically closed and of characteristic 0.

General case

Definition

A projective variety $X \subseteq \mathbb{P}V$ is called *r*-defective if

$$\dim \sigma_r(X) < \min\{r \dim X + r - 1, \dim V - 1\},\$$

and not r-defective otherwise.

Proposition

Let X be not r-defective and L be a general linear subspace. Then

 $\dim \sigma_r(X \cap L) < \dim \sigma_r(X) \cap L.$

Thus in general, $\sigma_r(X \cap L) \neq \sigma_r(X) \cap L$.

Special case

Since $Seg(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n) \hookrightarrow Seg(\mathbb{P}V_I \times \mathbb{P}V_{I^c})$, where $I \subset [n]$,

 $\sigma_r(\operatorname{Seg}(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n)) \hookrightarrow \sigma_r(\operatorname{Seg}(\mathbb{P}V_I \times \mathbb{P}V_{I^c})).$

Thus $(r+1) \times (r+1)$ minors give equations of $\sigma_r(\text{Seg}(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n))$.

Theorem (Buczyńska-Buczyński)

If $d \ge 2r$, $r \le i \le d - r$ and also either $r \le 10$ or dim $V \le 4$, then $\sigma_r(\nu_d(\mathbb{P}V))$ is set-theoretically defined by $(r+1) \times (r+1)$ minors of the *i*-th catalecticant matrix.

Corollary

If $d \ge 2r$ and $r \le 10$, then $\sigma_r(\nu_d(\mathbb{P}V)) = \sigma_r(\operatorname{Seg}(\mathbb{P}V^{\times d})) \cap \mathbb{P}S^d V$ as sets.

General case continued

Proposition

10

Let $X \subseteq \mathbb{P}V$ be not *r*-defective, and *L* be a general linear subspace of codimension ℓ . Assume dim V = n, dim X = m. Let $Y := X \cap L$.

► If

$$\lceil \frac{n}{m+1} \rceil > \lceil \frac{n-\ell}{m-\ell+1} \rceil - 1,$$
then $\sigma_r(Y) \not\subseteq \sigma_{r-1}(X)$, where $r \le r_g(Y)$.
► If

$$\lceil \frac{n}{m+1} \rceil \le \lceil \frac{n-\ell}{m-\ell+1} \rceil - 1,$$

then there is some $r \leq r_g(Y)$ such that $\sigma_r(Y) \subseteq \sigma_{r-1}(X)$.

Prolongation

Definition

Let A be a vector subspace of $S^d V$. The k-th prolongation of A, denoted by $A^{(k)}$, is defined by

$$A^{(k)} = \{f \in S^{d+k}V \mid \frac{\partial^k f}{\partial x^{\alpha}} \in A, |\alpha| = k\}.$$

Equivalently,

Definition

For a subspace
$$A \subset S^d V$$
, $A^{(k)} = (A \otimes S^k V) \cap S^{d+k} V$.

Theorem (Sidman–Sullivant)

If $\alpha(I(X)) = k$, then

$$I_{r(k-1)+1}(\sigma_r(X)) = I_k(X)^{((k-1)(r-1))}.$$

Prolongation continued

Given a linear subspace $\mathbb{P}L \stackrel{\iota}{\hookrightarrow} \mathbb{P}V$, which induces a homomorphism $\iota^* \colon \operatorname{Sym}(V^*) \to \operatorname{Sym}(L^*)$, let $Y = (X \cap \mathbb{P}L)_{\operatorname{red}}$.

Proposition

Assume Span{Y} = $\mathbb{P}L$, and Y is irreducible. If

$$\iota^*(I_k(X)^{((k-1)(r-2))}) \neq 0,$$

the linear section $X \cap \mathbb{P}L$ has the general rank-*r* preserving property.

Theorem

For a general Vandermonde rank-r Hankel tensor, its symmetric rank and rank are also r, where $r \leq \lfloor \frac{dn+1}{2} \rfloor$.

Special points

Let $X \subseteq \mathbb{P}V$ be a nondegenerate irreducible projective variety and $L \subseteq V$ be a linear subspace.

Lemma

Assume there are subspaces $U_1, \ldots, U_m \subseteq V$ such that

- 1. $V = U_1 \otimes \cdots \otimes U_m$,
- 2. X is contained in Seg($\mathbb{P}U_1 \times \cdots \times \mathbb{P}U_m$),
- 3. $Y := (X \cap \mathbb{P}L)_{red}$ is irreducible.

If there is a point $p \in \sigma_r(Y)$ such that $p \notin \sigma_{r-1}(\text{Seg}(\mathbb{P}U_1 \times \cdots \times \mathbb{P}U_m))$, then $\sigma_r(Y) \not\subseteq \sigma_{r-1}(X)$.

Corollaries

Theorem

Let T be a general symmetric rank-r tensor in $S^{d}(\mathbb{C}^{n})$. Then 1. when d = 2k and $r \leq \binom{k+n-1}{k}$, rank $(T) = \operatorname{rank}_{S}(T) = r$. 2. when d = 2k + 1 and $r \leq \binom{k+n-1}{k} + \lfloor \frac{n}{2} \rfloor - 1$, rank $(T) = \operatorname{rank}_{S}(T) = r$.

Prolongation continued

Given nondegenerate irreducible subvarieties $X \subseteq \mathbb{P}V$ and $Y \subseteq \mathbb{P}W$, let $i: V \to V \oplus W$ and $j: W \to V \oplus W$ be the natural embeddings. Then

emma

$$I_{\ell}(J(\imath(X), j(Y))) \subseteq I_k(j(Y))^{(\ell-k)} \cap I_{\ell-k}(\imath(X))^{(k)}$$
 for $0 \le k \le \ell$.

Let dim
$$V = n$$
, dim $W = m$, and $k = \lfloor d/2 \rfloor$.

Corollary

When $r \leq \binom{n+k-1}{k}$ and $s \leq \binom{m+k-1}{k}$, for a general rk_{S} -r tensor $T \in S^d V$ and a general rk_{S} -s tensor $T' \in S^d W$,

 $\mathsf{rk}_{\mathcal{S}}(T \oplus T') = r + s.$

Overview

Introduction

X-rank decomposition

General rank preserving property

Rank preserving property

X-border ranks

Motivation: when is

$$\sigma_r(\nu_d(\mathbb{P}V)) = \sigma_r(\operatorname{Seg}(\mathbb{P}V^d)) \cap \mathbb{P}(S^d V)?$$

Let $X \subset \mathbb{P}V$ be a nonsingular irreducible nondegenerate projective variety. For $[p] \in \sigma_r(X)$, by definition

$$[p] \in \lim_{t\to 0} [x_1(t) \wedge \cdots \wedge x_r(t)],$$

where $x_1(t),\ldots,x_r(t)\subset \widehat{X}\setminus\{0\}$ are smooth curves.

Lemma (Buczyński-Landsberg)

When $X = G/P \subset \mathbb{P}V$ is a homogeneously embedded homogeneous variety, we may assume

$$[p] \in \lim_{t\to 0} [x_1(0) \wedge x_2(t) \wedge \cdots \wedge x_r(t)].$$

X-border-rank-2 points

When r = 2 and $X = G/P \subset \mathbb{P}V$, then

 $[p] \in \lim_{t\to 0} [x_1(0) \wedge x_2(t)].$

If [x₁(0)] ≠ [x₂(0)], [p] = [x₁(0) + x₂(0)].
If [x₁(0)] = [x₂(0)],
[p] ∈ lim_{t→0}[x₁(0) ∧ (x₁(0) + tx'₁(0) + O(t²))] ∈ [x₁(0) ∧ x'₁(0)],

i.e., [p] is in the tangent variety of X.

Border rank-3 tensors

When r = 3 and $X = \text{Seg}(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n)$ where $n \ge 3$, then $[p] \in \lim_{t \to 0} [x_1(0) \wedge x_2(t) \wedge x_3(t)].$

- If $x_1(0) \wedge x_2(0) \wedge x_3(0) \neq 0$, $[p] = [x_1(0) + x_2(0) + x_3(0)]$.
- If $[x_1(0)] = [x_2(0)]$ and $x_1(0) \land x_3(0) \neq 0$,

 $[p] \in \lim_{t\to 0} [x_1(0) \land (x_1(0) + tx_1'(0) + O(t^2)) \land x_3(0)] = [x_1(0) \land x_1'(0) \land x_3(0)].$

• If
$$[x_1(0)] = [x_2(0)] = [x_3(0)]$$
,

$$egin{aligned} &[p] \in &\lim_{t o 0} [x_1(0) \wedge (x_1(0) + tx_1'(0) + O(t^2)) \ & \wedge (x_1(0) + tx_1'(0) + t^2x_1''(0) + O(t^3))] \ &= &[x_1(0) \wedge x_1'(0) \wedge x_1''(0)]. \end{aligned}$$

Border rank-3 tensors, continued

• If
$$[x_1(0)] = [x_2(0)], [x_1(0)] \neq [x_3(0)], \text{ and}$$

Span{ $[x_1(0)], [x_3(0)]$ } $\subset X, i.e., x_3(0) \in \widehat{\mathsf{T}}_{[x_1(0)]}X,$
 $[p] \in \lim_{t \to 0} [x_1(0) \land (x_1(0) + tx'_1(0) + O(t^2)) \land (x_3(0) + tx'_3(0) + O(t^2))]$
 $= [x_1(0) \land x'_1(0) \land x'_3(0)].$

Theorem (Buczyński-Landsberg)

Any $[p] \in \sigma_3(X)$ has one of these 4 normal forms.

Small symmetric border rank tensors

$$\begin{array}{l} \mbox{When } r = 3 \mbox{ and } Y = \nu_d(\mathbb{P}V) \mbox{ where } d \geq 3, \\ \bullet \ [p] = \lim_{t \to 0} [x^d + y^d + z^d] = [x^d + y^d + z^d]. \\ \bullet \ [p] = \lim_{t \to 0} [x^d + (x + ty)^d + z^d] = [x^{d-1}y + z^d]. \\ \bullet \ [p] = \lim_{t \to 0} [x^d + (x + ty)^d + (x + 2ty + t^2z)^d] = [x^{d-2}y^2 + x^{d-1}z]. \\ \mbox{When } r = 4 \mbox{ and } Y = \nu_d(\mathbb{P}V) \mbox{ where } d \geq 3, \\ \bullet \ [p] = [x^d + y^d + z^d + w^d]. \\ \bullet \ [p] = \lim_{t \to 0} [x^d + (x + ty)^d + z^d + w^d] = [x^{d-1}y + z^d + w^d]. \\ \bullet \ [p] = \lim_{t \to 0} [x^d + (x + ty)^d + z^d + (z + tw)^d] = [x^{d-1}y + z^{d-1}w]. \\ \bullet \ [p] = \lim_{t \to 0} [x^d + (x + ty)^d + (x + ty + t^2z)^d + (x + t^2z)^d] = [x^{d-2}yz]. \\ \bullet \ [p] = \lim_{t \to 0} [x^d + (x + ty)^d + (x + ty + t^2z)^d + w^d] = [x^{d-2}y^2 + x^{d-1}z + w^d]. \\ \bullet \ [p] = \lim_{t \to 0} [x^d + (x + ty)^d + (x + ty + t^2z)^d + (x + ty + t^2z + t^3w)^d] = [x^{d-3}y^3 + x^{d-2}z^2 + x^{d-1}w]. \end{array}$$

Small symmetric border rank tensors, continued

Theorem (Landsberg-Teitler)

These are all the possible normal forms of $\sigma_3(Y)$ and $\sigma_4(Y)$, when dim Span $\{x, y, z\} = 3$ and dim Span $\{x, y, z, w\} = 4$.

Normal Form of p , where rank _S $(p) = 5$	Condition on Span{p}
$v^{d-4}x^4 + v^{d-3}x^2y + v^{d-2}y^2 + v^{d-2}xz + v^{d-1}w$	$v \wedge x \neq 0$
$v^{d-3}x^3 + v^{d-2}y^2 + v^{d-2}xz + v^{d-1}w$	$v \wedge x \wedge y \neq 0$
$v^{d-2}x^2 + v^{d-2}y^2 + v^{d-2}z^2 + v^{d-1}w$	$v \wedge x \wedge y \wedge z \neq 0$

Normal Form of p , where rank _S $(p) = 6$	Condition on Span $\{p\}$
$v^{d-5}x^5 + v^{d-4}x^3y + v^{d-3}x^2z + v^{d-3}xy^2 + v^{d-2}yz + v^{d-2}xw + v^{d-1}u$	$v \wedge x \neq 0$
$v^{d-4}x^4 + v^{d-3}y^3 + v^{d-3}x^2y + v^{d-2}xz + v^{d-2}yw + v^{d-1}u$	$v \wedge x \wedge y \neq 0$
$v^{d-4}x^4 + v^{d-3}x^2y + v^{d-2}y^2 + v^{d-2}z^2 + v^{d-2}xw + v^{d-1}u$	$v \wedge x \wedge y \wedge z \neq 0$
$v^{d-3}x^3 + v^{d-3}y^3 + v^{d-2}xz + v^{d-2}yw + v^{d-1}u$	$v \wedge x \wedge y \neq 0$
$v^{d-3}x^3 + v^{d-2}y^2 + v^{d-2}z^2 + v^{d-2}xw + v^{d-1}u$	$v \wedge x \wedge y \wedge z \neq 0$
$v^{d-2}x^2 + v^{d-2}y^2 + v^{d-2}z^2 + v^{d-2}w^2 + v^{d-1}u$	$v \land x \land y \land z \land w \neq 0$

Curves on Veronese

Given $[v^d] \in \nu_d(\mathbb{P}V)$, choose a splitting

$$S^d V = \operatorname{Span}\{v^d\} \oplus \mathcal{T} \oplus \mathcal{N},$$

where $\text{Span}\{v^d\} \oplus \mathcal{T}$ is the affine tangent space $\widehat{\mathsf{T}}_{[v^d]}\nu_d(\mathbb{P}V)$, and

$$\mathcal{N} = \mathcal{N}_2 \oplus \cdots \oplus \mathcal{N}_d.$$

Let $x(t) \subseteq \mathcal{T}$ be an analytic curve, and $\gamma(t) = v^d + x(t) + x_{\mathcal{N}}(t)$, where

$$x_{\mathcal{N}}(t) = \operatorname{H}(x^2(t)) + \sum_{i=3}^{\infty} \mathbb{F}_i(x^i(t)).$$

For each $w = v^{d-1}u \in \mathcal{T}$, $\mathbb{F}_k(w, \ldots, w) = v^{d-k}u^k \in \mathcal{N}_k$.

Normal forms of small border ranks

Theorem

Let $d \ge 2r - 1$. Given $[p] \in \sigma_r(X)$,

$$p = q_1 + \dots + q_{k_1} + \dots + q_{k_1 + \dots + k_{l-1} + 1} + \dots + q_{k_1 + \dots + k_l}$$

where $[q_j]$ is an embedded aligned subscheme of length α_j supported at $[v_i^d]$ for $j \in \{k_0 + \cdots + k_{i-1} + 1, \ldots, k_0 + \cdots + k_i\}$, $i \in \{1, \ldots, l\}$. Here $k_0 = 0, k_1 + \cdots + k_l \leq r$, and

$$q_{k_0+\cdots+k_{i-1}+1}+\cdots+q_{k_0+\cdots+k_i}=v_i^{d-\beta_i}w_i$$

for some $w_i \in S^{\beta_i} V$, where $\beta_i \leq m_i - 1$ for $i \in \{1, \ldots, l\}$.

Norm forms Continued

Theorem

Moreover,

$$q_{j} \in \mathsf{Span}\{v_{i}^{d}, v_{i}^{d-1}u_{j,1}, \binom{d}{2}v_{i}^{d-2}u_{j,1}^{2} + dv_{i}^{d-1}u_{j,2}, \cdots,$$

$$\sum_{\substack{\theta_{j,1}+2\theta_{j,2}+\dots+(\alpha_{j}-1)\theta_{j,\alpha_{j}-1}=\alpha_{j}-1\\ v_{i}^{d-(\theta_{j,1}+\dots+\theta_{j,\alpha_{j}-1})}u_{j,1}^{\theta_{j,1}}\cdots u_{j,\alpha_{j}-1}^{\theta_{j,\alpha_{j}-1}}\},$$

where $j \in \{k_0 + \dots + k_{i-1} + 1, \dots, k_0 + \dots + k_i\}$, $u_{j,1}, \dots, u_{j,\alpha_j-1} \in V$, and

$$q_{k_0+\cdots+k_{i-1}+1}\wedge\cdots\wedge q_{k_0+\cdots+k_i}\neq 0,$$

for $i \in \{1, \ldots, l\}$. Without loss of generality, we may assume

$$m_i - 1 \geq \beta_i = \alpha_{k_0 + \dots + k_{i-1} + 1} \geq \dots \geq \alpha_{k_0 + \dots + k_i}$$

Thank you very much for your attention!