On the rank preserving property of linear sections and its applications in tensors

Yang Qi
Department of Mathematics, University of Chicago
Joint work with Lek-Heng Lim

October 8, 2019
Geometria Algebrica e Applicazioni
Dipartimento di Matematica e Informatica, Università di Firenze

Overview

Introduction

X-rank decomposition

General rank preserving property

Rank preserving property

Rank decomposition

Let V_{1}, \ldots, V_{n} be vector spaces over \mathbb{K}, and $T \in V_{1} \otimes \cdots \otimes V_{n}$.

Definition

The rank, denoted by $\mathrm{rk}(T)$, of a tensor T is the minimum integer r such that

$$
T=\sum_{i=1}^{r} u_{i, 1} \otimes \cdots \otimes u_{i, n}
$$

where each vector $u_{i, j} \in V_{j}$.

Such a decomposition $T=\sum_{i=1}^{r} u_{i, 1} \otimes \cdots \otimes u_{i, n}$ is called a rank-r decomposition.

Symmetric rank decomposition

Let V be a vector space over \mathbb{K}, and $T \in S^{d} V$ be a symmetric tensor.

Definition

The symmetric rank, denoted by $\mathrm{rk}_{s}(T)$, of T is the minimum integer r such that

$$
T=\sum_{i=1}^{r} \lambda_{i} u_{i}^{d}
$$

where each vector $u_{i} \in V$ and each $\lambda_{i} \in \mathbb{K}$.

Such a decomposition $T=\sum_{i=1}^{r} u_{i}^{d}$ is called a symmetric rank- r decomposition, or a Waring decomposition.

Vandermonde rank decomposition

Let V be an $(n+1)$-dimensional vector space. Fix a basis $\left\{e_{1}, \ldots, e_{n+1}\right\}$ for V. A symmetric tensor

$$
H:=\sum_{1 \leq i_{1}, \ldots, i_{d} \leq n+1} H_{i_{1} \ldots i_{d}} e_{i_{1}} \cdots e_{i_{d}} \in S^{d} V
$$

is called Hankel if there is a vector $h:=\left(h_{0}, \ldots, h_{n d}\right)$ such that

$$
H_{i_{1} \ldots i_{d}}=h_{i_{1}+\cdots+i_{d}-d} .
$$

H is said to have a Vandermonde rank decomposition if, after identifying V with $S^{n} W$ for some 2-dim vector space W, H has the form

$$
\begin{equation*}
H=\sum_{i=1}^{r} \lambda_{i}\left(w_{i}^{\otimes n}\right)^{\otimes d} \tag{1}
\end{equation*}
$$

where $w_{1}, \ldots, w_{r} \in W$. The minimum r is called the Vandermonde rank of H.
A symmetric tensor H is Hankel if and only if H has a Vandermonde rank decomposition.

Border rank

The set of tensors with rank $\leq r$ is not necessarily closed when $r>1$.

Definition

The border rank, denoted by $\operatorname{brk}(T)$, of a tensor T is the minimum integer r such that T is a limit of rank- r tensors.

Definition

The symmetric border rank, denoted by brks (T), of a symmetric tensor T is the minimum integer r such that T is a limit of symmetric rank- r tensors.

Conjectures on rank decompositions

Conjecture (Comon)

Given any symmetric tensor $T \in S^{d} V$,

$$
\operatorname{rk}_{S}(T)=\operatorname{rk}(T)
$$

Conjecture (Strassen)

Given vector spaces $V_{1}, \ldots, V_{n}, W_{1}, \ldots, W_{n}$ such that $V_{i} \cap W_{i}=\{0\}$ for each i, and tensors $A \in V_{1} \otimes \cdots \otimes V_{n}$ and $B \in W_{1} \otimes \cdots \otimes W_{n}$. Then

$$
\mathrm{rk}(A+B)=\mathrm{rk}(A)+\mathrm{rk}(B),
$$

where $A+B \in\left(V_{1} \oplus W_{1}\right) \otimes \cdots \otimes\left(V_{n} \oplus W_{n}\right)$.

Conjectures on rank decompositions continued

Conjecture (symmetric version of Strassen's conjecture)

Given vector spaces V and W such that $V \cap W=\{0\}$, and tensors $A \in S^{d} V$ and $B \in S^{d} W$. Then

$$
\mathrm{rk}_{s}(A+B)=\mathrm{rk}_{s}(A)+\mathrm{rk}_{s}(B),
$$

where $A+B \in S^{d}(V \oplus W)$.
Conjecture (Nie - Ye)
For a general Vandermonde rank-r Hankel tensor, its symmetric rank and rank are also r.

Overview

Introduction

X-rank decomposition

General rank preserving property

Rank preserving property

X-rank decomposition

Let $X \subset \mathbb{P} V$ be a nondegenerate projective variety.

- nondegenerate (X is not contained in a hyperplane) \Longrightarrow for any $v \in V, v=x_{1}+\cdots+x_{m}$ for some $x_{1}, \ldots, x_{m} \in \widehat{X}$.
- projective $\Longrightarrow v=x_{1}+\cdots+x_{m}$ instead of $v=c_{1} x_{1}+\cdots+c_{r} x_{m}$ for some coefficients c_{1}, \ldots, c_{m}.

Definition (Zak)

For $v \in V$, the X-rank of v, denoted by $\mathrm{rk}_{x}(v)$, is the minimum integer r such that

$$
v=x_{1}+\cdots+x_{r},
$$

where $x_{1}, \ldots, x_{r} \in \widehat{X}$.

Border and Generic X-rank

Definition

For $v \in V$, the X-border-rank of v, denoted by brk $_{X}(v)$, is the minimum integer r such that v is a limit of X-rank- r points.

Definition

Over \mathbb{C}, there is a unique X-rank r such that the set of X-rank- r points contains a Zariski open subset of V, which is called the generic rank.

Examples

The Segre variety is defined to be the image of

$$
\begin{aligned}
\text { Seg }: \mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n} & \rightarrow \mathbb{P}\left(V_{1} \otimes \cdots \otimes V_{n}\right) \\
\left(\left[v_{1}\right], \ldots,\left[v_{n}\right]\right) & \mapsto\left[v_{1} \otimes \cdots \otimes v_{n}\right] .
\end{aligned}
$$

The Veronese variety is defined to be the image of

$$
\nu_{d}: \mathbb{P} V \rightarrow \mathbb{P} S^{d} V, \quad[v] \mapsto\left[v^{d}\right] .
$$

Example

- "The tensor rank in $V_{1} \otimes \cdots \otimes V_{n} "=\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)$-rank.
- "The symmetric rank in $S^{d} V^{\prime \prime}=\nu_{d}(\mathbb{P} V)$-rank.
- the generic rank $r_{g}\left(\operatorname{Seg}\left(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \times \mathbb{P}^{n-1}\right)\right)=\left\lceil\frac{n^{3}}{3 n-2}\right\rceil$ if $n \neq 3$.
- $\mathrm{rk}_{x}(v) \geq \mathrm{brk}_{x}(v)$.

Join Variety

Geometric definition:
For projective varieties $X_{1}, \ldots, X_{r} \subseteq \mathbb{P} V$ over \mathbb{K}, let \widehat{X}_{i} denote the affine cone of X_{i}.

Definition

The join map is defined by

$$
J: \widehat{X}_{1} \times \cdots \times \widehat{X}_{r} \rightarrow V, \quad\left(x_{1}, \ldots, x_{r}\right) \mapsto x_{1}+\cdots+x_{r} .
$$

The Zariski closure of the image $J\left(\widehat{X}_{1} \times \cdots \times \widehat{X}_{r}\right)$ in V is the affine cone of some projective variety, which is denoted by $J\left(X_{1}, \ldots, X_{r}\right)$, and called the join variety of X_{1}, \ldots, X_{r}.

Join of ideals

Algebraic definition:

Definition

Given ideals $I_{1}, \ldots, I_{r} \subseteq \mathbb{K}[\boldsymbol{x}]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, the join of I_{1}, \ldots, I_{r} is the elimination ideal

$$
\left(I_{1}\left(\boldsymbol{y}_{1}\right)+\cdots+I_{r}\left(\boldsymbol{y}_{r}\right)+\left\langle x_{j}-\sum_{i=1}^{r} y_{i j} \mid 1 \leq j \leq n\right\rangle\right) \cap \mathbb{K}[\boldsymbol{x}]
$$

where $\boldsymbol{y}_{i}=\left(y_{i 1}, \ldots, y_{i n}\right)$, and $I_{i}\left(\boldsymbol{y}_{i}\right)$ denotes the ideal I_{i} with x_{j} substituted by $y_{i j}$.

Secant varieties

Definition

When $X_{1}=\cdots=X_{r}=X$, we denote $J\left(X_{1}, \ldots, X_{r}\right)$ by $\sigma_{r}(X)$, and call it the r th secant variety of X.

Definition

When X is an irreducible projective variety,

$$
\sigma_{r}(X)=\bigcup_{x_{1}, \ldots, x_{r} \text { general in } X} \operatorname{Span}\left\{x_{1}, \ldots, x_{r}\right\} .
$$

Connection with tensors

Let $X=\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)$ be the Segre variety, which is defined by:

$$
\begin{aligned}
\text { Seg }: \mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n} & \rightarrow \mathbb{P}\left(V_{1} \otimes \cdots \otimes V_{n}\right) \\
\left(\left[v_{1}\right], \ldots,\left[v_{n}\right]\right) & \mapsto\left[v_{1} \otimes \cdots \otimes v_{n}\right] .
\end{aligned}
$$

Then over $\mathbb{C}, \widehat{\sigma_{r}(X)}$ is the set of tensors whose border ranks are $\leq r$.
Similarly, let $Y=\nu_{d}(\mathbb{P} V)$ be the Veronese variety, which is defined by

$$
\nu_{d}: \mathbb{P} V \rightarrow \mathbb{P} S^{d} V, \quad[v] \mapsto\left[v^{d}\right] .
$$

Then over $\mathbb{C}, \widehat{\sigma_{r}(Y)}$ is the set of symmetric tensors with symmetric border rank $\leq r$.

Overview

Introduction

X-rank decomposition

General rank preserving property

Rank preserving property

Rank preserving property

Let $X \subseteq \mathbb{P} V$ be a nondegenerate irreducible projective variety, and $L \subset \mathbb{P} V$ be a linear subspace. Let $Y:=(X \cap L)_{\text {red }}$, the reduced subscheme of $X \cap L$.

Definition (Buczyński-Ginensky-Landsberg)

Y is said to have the rank-r preserving property for a fixed r if

- the linear span $\operatorname{Span}\{Y\}$ is L;
- $\mathrm{rk}_{X}(v)=r$ for all $v \in L$ with $\mathrm{rk}_{Y}(v)=r$.

Definition

Y is said to have the general rank-r preserving property if

- $\operatorname{Span}\{Y\}=L$;
- $\mathrm{rk}_{x}(v)=r$ for a general rk $y-r$ point $v \in L$.

Similarly we can define the border rank-r preserving property by replacing rk with brk.

Examples

Conjecture (Comon)

Let

$$
X=\operatorname{Seg}\left(\mathbb{P} V^{d}\right), \quad L=\mathbb{P}\left(S^{d} V\right), \quad Y=X \cap L=\nu_{d}(\mathbb{P} V)
$$

Does Y have the symmetric rank- r preserving property?

Conjecture (Strassen)

Let

$$
\begin{gathered}
X=\operatorname{Seg}\left(\mathbb{P}(V \oplus W)^{d}\right), \quad L=\mathbb{P}\left(V^{\otimes d} \oplus W^{\otimes d}\right), \\
Y=X \cap L=\operatorname{Seg}\left(\mathbb{P} V^{d}\right) \cup \operatorname{Seg}\left(\mathbb{P} W^{d}\right) .
\end{gathered}
$$

Does Y have the rank- r preserving property?

More examples

Conjecture (symmetric version of Strassen's conjecture)

Let

$$
\begin{gathered}
X=\nu_{d}(\mathbb{P}(V \oplus W)), \quad L=\mathbb{P}\left(S^{d} V \oplus S^{d} W\right), \\
Y=X \cap L=\nu_{d}(\mathbb{P} V) \cup \nu_{d}(\mathbb{P} W) .
\end{gathered}
$$

Does Y have the symmetric rank- r preserving property?

Conjecture ($\mathrm{Nie}-\mathrm{Ye}$)

Let

$$
\begin{aligned}
& X_{1}=\nu_{d}(\mathbb{P} V), \quad X_{2}=\operatorname{Seg}\left(\mathbb{P} V^{\times d}\right), \quad L=\mathbb{P}\left(S^{d n} W\right), \\
& Y=X_{1} \cap L=X_{2} \cap L=\nu_{d n}(\mathbb{P} W), \text { where } \operatorname{dim} W=2 .
\end{aligned}
$$

Does Y have the general (symmetric) rank- r preserving property.

Rank preserving property often fails

Theorem (Nie - Ye)

There is a Hankel tensor whose Vandermonde rank is greater than its symmetric rank.

Theorem (Schönhage)

There are $T_{1} \in V_{1} \otimes V_{2} \otimes V_{3}$ and $T_{2} \in W_{1} \otimes W_{2} \otimes W_{3}$ such that

$$
\operatorname{brk}\left(T_{1} \oplus T_{2}\right)<\operatorname{brk}\left(T_{1}\right)+\operatorname{brk}\left(T_{2}\right) .
$$

Rank preserving property often fails continued

Theorem (Shitov)

There is a symmetric tensor T such that $\mathrm{rk}(T)<\mathrm{rk}_{s}(T)$.

Theorem (Shitov)

There are $T_{1} \in V_{1} \otimes V_{2} \otimes V_{3}$ and $T_{2} \in W_{1} \otimes W_{2} \otimes W_{3}$ such that

$$
\operatorname{rk}\left(T_{1} \oplus T_{2}\right)<\operatorname{rk}\left(T_{1}\right)+\operatorname{rk}\left(T_{2}\right)
$$

Reasonable to consider the general rank preserving property of Y, i.e.,

$$
\sigma_{r}(Y) \nsubseteq \sigma_{r-1}(X)
$$

Assumptions on \mathbb{K}

Theorem

Let $X \subseteq \mathbb{P} V$ be a variety where the set $X(\mathbb{K})$ of \mathbb{K}-rational points of X is Zariski dense over a perfect field \mathbb{K}. Then

$$
\sigma_{r}\left(X \times_{\mathbb{K}} \overline{\mathbb{K}}\right)=\sigma_{r}(X) \times_{\mathbb{K}} \overline{\mathbb{K}} .
$$

Lemma

Assume \mathbb{K} is of characteristic $0, X(\mathbb{K})$ is dense, and Y is irreducible. When $r \leq r_{g}(Y)$, if

$$
\begin{equation*}
\sigma_{r}\left(Y \times_{\mathbb{K}} \overline{\mathbb{K}}\right) \nsubseteq\left(\sigma_{r-1}\left(X \times_{\mathbb{K}} \overline{\mathbb{K}}\right) \cap L \times_{\mathbb{K}} \overline{\mathbb{K}}\right)_{\mathrm{red}} \tag{2}
\end{equation*}
$$

then Y has the general rank-r preserving property.
We will assume \mathbb{K} is algebraically closed and of characteristic 0 .

General case

Definition

A projective variety $X \subseteq \mathbb{P} V$ is called r-defective if

$$
\operatorname{dim} \sigma_{r}(X)<\min \{r \operatorname{dim} X+r-1, \operatorname{dim} V-1\}
$$

and not r-defective otherwise.

Proposition

Let X be not r-defective and L be a general linear subspace. Then

$$
\operatorname{dim} \sigma_{r}(X \cap L)<\operatorname{dim} \sigma_{r}(X) \cap L .
$$

Thus in general, $\sigma_{r}(X \cap L) \neq \sigma_{r}(X) \cap L$.

Special case

Since $\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right) \hookrightarrow \operatorname{Seg}\left(\mathbb{P} V_{l} \times \mathbb{P} V_{1 c}\right)$, where $I \subset[n]$,

$$
\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)\right) \hookrightarrow \sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} V_{l} \times \mathbb{P} V_{l c}\right)\right)
$$

Thus $(r+1) \times(r+1)$ minors give equations of $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)\right)$.

Theorem (Buczyńska-Buczyński)

If $d \geq 2 r, r \leq i \leq d-r$ and also either $r \leq 10$ or $\operatorname{dim} V \leq 4$, then $\sigma_{r}\left(\nu_{d}(\mathbb{P} V)\right)$ is set-theoretically defined by $(r+1) \times(r+1)$ minors of the i-th catalecticant matrix.

Corollary

If $d \geq 2 r$ and $r \leq 10$, then $\sigma_{r}\left(\nu_{d}(\mathbb{P} V)\right)=\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} V^{\times d}\right)\right) \cap \mathbb{P}^{d} V$ as sets.

General case continued

Proposition

Let $X \subseteq \mathbb{P} V$ be not r-defective, and L be a general linear subspace of codimension ℓ. Assume $\operatorname{dim} V=n, \operatorname{dim} X=m$. Let $Y:=X \cap L$.

- If

$$
\left\lceil\frac{n}{m+1}\right\rceil>\left\lceil\frac{n-\ell}{m-\ell+1}\right\rceil-1
$$

then $\sigma_{r}(Y) \nsubseteq \sigma_{r-1}(X)$, where $r \leq r_{g}(Y)$.

- If

$$
\left\lceil\frac{n}{m+1}\right\rceil \leq\left\lceil\frac{n-\ell}{m-\ell+1}\right\rceil-1
$$

then there is some $r \leq r_{g}(Y)$ such that $\sigma_{r}(Y) \subseteq \sigma_{r-1}(X)$.

Prolongation

Definition

Let A be a vector subspace of $S^{d} V$. The k-th prolongation of A, denoted by $A^{(k)}$, is defined by

$$
A^{(k)}=\left\{f \in S^{d+k} V\left|\frac{\partial^{k} f}{\partial \boldsymbol{x}^{\alpha}} \in A,|\boldsymbol{\alpha}|=k\right\}\right.
$$

Equivalently,

Definition

For a subspace $A \subset S^{d} V, A^{(k)}=\left(A \otimes S^{k} V\right) \cap S^{d+k} V$.
Theorem (Sidman-Sullivant)
If $\alpha(I(X))=k$, then

$$
I_{r(k-1)+1}\left(\sigma_{r}(X)\right)=I_{k}(X)^{((k-1)(r-1))}
$$

Prolongation continued

Given a linear subspace $\mathbb{P} L \stackrel{\iota}{\hookrightarrow} \mathbb{P} V$, which induces a homomorphism $\iota^{*}: \operatorname{Sym}\left(V^{*}\right) \rightarrow \operatorname{Sym}\left(L^{*}\right)$, let $Y=(X \cap \mathbb{P L})_{\text {red }}$.

Proposition

Assume $\operatorname{Span}\{Y\}=\mathbb{P} L$, and Y is irreducible. If

$$
\iota^{*}\left(I_{k}(X)^{((k-1)(r-2))}\right) \neq 0,
$$

the linear section $X \cap \mathbb{P L}$ has the general rank- r preserving property.

Theorem

For a general Vandermonde rank-r Hankel tensor, its symmetric rank and rank are also r, where $r \leq\left\lceil\frac{d n+1}{2}\right\rceil$.

Special points

Let $X \subseteq \mathbb{P} V$ be a nondegenerate irreducible projective variety and $L \subseteq V$ be a linear subspace.

Lemma

Assume there are subspaces $U_{1}, \ldots, U_{m} \subseteq V$ such that

1. $V=U_{1} \otimes \cdots \otimes U_{m}$,
2. X is contained in $\operatorname{Seg}\left(\mathbb{P} U_{1} \times \cdots \times \mathbb{P} U_{m}\right)$,
3. $Y:=(X \cap \mathbb{P L})_{\text {red }}$ is irreducible.

If there is a point $p \in \sigma_{r}(Y)$ such that $p \notin \sigma_{r-1}\left(\operatorname{Seg}\left(\mathbb{P} U_{1} \times \cdots \times \mathbb{P} U_{m}\right)\right)$, then $\sigma_{r}(Y) \nsubseteq \sigma_{r-1}(X)$.

Corollaries

Theorem

Let T be a general symmetric rank-r tensor in $S^{d}\left(\mathbb{C}^{n}\right)$. Then

1. when $d=2 k$ and $r \leq\binom{ k+n-1}{k}$,

$$
\operatorname{rank}(T)=\operatorname{rank}_{S}(T)=r
$$

2. when $d=2 k+1$ and $r \leq\binom{ k+n-1}{k}+\left\lfloor\frac{n}{2}\right\rfloor-1$,

$$
\operatorname{rank}(T)=\operatorname{rank}_{S}(T)=r
$$

Prolongation continued

Given nondegenerate irreducible subvarieties $X \subseteq \mathbb{P} V$ and $Y \subseteq \mathbb{P} W$, let $\imath: V \rightarrow V \oplus W$ and $\jmath: W \rightarrow V \oplus W$ be the natural embeddings. Then

Lemma

$$
I_{\ell}(J(\imath(X), \jmath(Y))) \subseteq I_{k}(\jmath(Y))^{(\ell-k)} \cap I_{\ell-k}(\imath(X))^{(k)} \text { for } 0 \leq k \leq \ell
$$

Let $\operatorname{dim} V=n, \operatorname{dim} W=m$, and $k=\lfloor d / 2\rfloor$.

Corollary

When $r \leq\binom{ n+k-1}{k}$ and $s \leq\binom{ m+k-1}{k}$, for a general rks $-r$ tensor $T \in S^{d} V$ and a general rks^{-s} tensor $T^{\prime} \in S^{d} W$,

$$
\mathrm{rk}_{s}\left(T \oplus T^{\prime}\right)=r+s
$$

Overview

Introduction

X-rank decomposition

General rank preserving property

Rank preserving property

X-border ranks

Motivation: when is

$$
\sigma_{r}\left(\nu_{d}(\mathbb{P} V)\right)=\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} V^{d}\right)\right) \cap \mathbb{P}\left(S^{d} V\right) ?
$$

Let $X \subset \mathbb{P} V$ be a nonsingular irreducible nondegenerate projective variety. For $[p] \in \sigma_{r}(X)$, by definition

$$
[p] \in \lim _{t \rightarrow 0}\left[x_{1}(t) \wedge \cdots \wedge x_{r}(t)\right]
$$

where $x_{1}(t), \ldots, x_{r}(t) \subset \widehat{X} \backslash\{0\}$ are smooth curves.

Lemma (Buczyński-Landsberg)

When $X=G / P \subset \mathbb{P} V$ is a homogeneously embedded homogeneous variety, we may assume

$$
[p] \in \lim _{t \rightarrow 0}\left[x_{1}(0) \wedge x_{2}(t) \wedge \cdots \wedge x_{r}(t)\right]
$$

X-border-rank-2 points

When $r=2$ and $X=G / P \subset \mathbb{P} V$, then

$$
[p] \in \lim _{t \rightarrow 0}\left[x_{1}(0) \wedge x_{2}(t)\right] .
$$

- If $\left[x_{1}(0)\right] \neq\left[x_{2}(0)\right],[p]=\left[x_{1}(0)+x_{2}(0)\right]$.
- If $\left[x_{1}(0)\right]=\left[x_{2}(0)\right]$,

$$
[p] \in \lim _{t \rightarrow 0}\left[x_{1}(0) \wedge\left(x_{1}(0)+t x_{1}^{\prime}(0)+O\left(t^{2}\right)\right)\right] \in\left[x_{1}(0) \wedge x_{1}^{\prime}(0)\right]
$$

i.e., $[p]$ is in the tangent variety of X.

Border rank-3 tensors

When $r=3$ and $X=\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)$ where $n \geq 3$, then

$$
[p] \in \lim _{t \rightarrow 0}\left[x_{1}(0) \wedge x_{2}(t) \wedge x_{3}(t)\right]
$$

- If $x_{1}(0) \wedge x_{2}(0) \wedge x_{3}(0) \neq 0,[p]=\left[x_{1}(0)+x_{2}(0)+x_{3}(0)\right]$.
- If $\left[x_{1}(0)\right]=\left[x_{2}(0)\right]$ and $x_{1}(0) \wedge x_{3}(0) \neq 0$,

$$
[p] \in \lim _{t \rightarrow 0}\left[x_{1}(0) \wedge\left(x_{1}(0)+t x_{1}^{\prime}(0)+O\left(t^{2}\right)\right) \wedge x_{3}(0)\right]=\left[x_{1}(0) \wedge x_{1}^{\prime}(0) \wedge x_{3}(0)\right] .
$$

- If $\left[x_{1}(0)\right]=\left[x_{2}(0)\right]=\left[x_{3}(0)\right]$,

$$
\begin{aligned}
{[p] \in } & \lim _{t \rightarrow 0}\left[x_{1}(0) \wedge\left(x_{1}(0)+t x_{1}^{\prime}(0)+O\left(t^{2}\right)\right)\right. \\
& \left.\wedge\left(x_{1}(0)+t x_{1}^{\prime}(0)+t^{2} x_{1}^{\prime \prime}(0)+O\left(t^{3}\right)\right)\right] \\
= & {\left[x_{1}(0) \wedge x_{1}^{\prime}(0) \wedge x_{1}^{\prime \prime}(0)\right] . }
\end{aligned}
$$

Border rank-3 tensors, continued

- If $\left[x_{1}(0)\right]=\left[x_{2}(0)\right],\left[x_{1}(0)\right] \neq\left[x_{3}(0)\right]$, and

$$
\begin{aligned}
& \operatorname{Span}\left\{\left[x_{1}(0)\right],\left[x_{3}(0)\right]\right\} \subset X, \quad \text { i.e., } \quad x_{3}(0) \in \hat{\mathrm{T}}_{\left[x_{1}(0)\right]} X, \\
& {[p] \in } \lim _{t \rightarrow 0}\left[x_{1}(0) \wedge\left(x_{1}(0)+t x_{1}^{\prime}(0)+O\left(t^{2}\right)\right)\right. \\
&\left.\wedge\left(x_{3}(0)+t x_{3}^{\prime}(0)+O\left(t^{2}\right)\right)\right] \\
&= {\left[x_{1}(0) \wedge x_{1}^{\prime}(0) \wedge x_{3}^{\prime}(0)\right] . }
\end{aligned}
$$

Theorem (Buczyński-Landsberg)
Any $[p] \in \sigma_{3}(X)$ has one of these 4 normal forms.

Small symmetric border rank tensors

When $r=3$ and $Y=\nu_{d}(\mathbb{P} V)$ where $d \geq 3$,

- $[p]=\lim _{t \rightarrow 0}\left[x^{d}+y^{d}+z^{d}\right]=\left[x^{d}+y^{d}+z^{d}\right]$.
- $[p]=\lim _{t \rightarrow 0}\left[x^{d}+(x+t y)^{d}+z^{d}\right]=\left[x^{d-1} y+z^{d}\right]$.
- $[p]=\lim _{t \rightarrow 0}\left[x^{d}+(x+t y)^{d}+\left(x+2 t y+t^{2} z\right)^{d}\right]=\left[x^{d-2} y^{2}+x^{d-1} z\right]$.

When $r=4$ and $Y=\nu_{d}(\mathbb{P} V)$ where $d \geq 3$,

- $[p]=\left[x^{d}+y^{d}+z^{d}+w^{d}\right]$.
- $[p]=\lim _{t \rightarrow 0}\left[x^{d}+(x+t y)^{d}+z^{d}+w^{d}\right]=\left[x^{d-1} y+z^{d}+w^{d}\right]$.
- $[p]=\lim _{t \rightarrow 0}\left[x^{d}+(x+t y)^{d}+z^{d}+(z+t w)^{d}\right]=\left[x^{d-1} y+z^{d-1} w\right]$.
- $[p]=\lim _{t \rightarrow 0}\left[x^{d}+(x+t y)^{d}+\left(x+t y+t^{2} z\right)^{d}+\left(x+t^{2} z\right)^{d}\right]=\left[x^{d-2} y z\right]$.
- $[p]=\lim _{t \rightarrow 0}\left[x^{d}+(x+t y)^{d}+\left(x+t y+t^{2} z\right)^{d}+w^{d}\right]=$ $\left[x^{d-2} y^{2}+x^{d-1} z+w^{d}\right]$.
- $[p]=\lim _{t \rightarrow 0}\left[x^{d}+(x+t y)^{d}+\left(x+t y+t^{2} z\right)^{d}+\left(x+t y+t^{2} z+t^{3} w\right)^{d}\right]=$ $\left[x^{d-3} y^{3}+x^{d-2} z^{2}+x^{d-1} w\right]$.

Small symmetric border rank tensors, continued

Theorem (Landsberg-Teitler)

These are all the possible normal forms of $\sigma_{3}(Y)$ and $\sigma_{4}(Y)$, when $\operatorname{dim} \operatorname{Span}\{x, y, z\}=3$ and $\operatorname{dim} \operatorname{Span}\{x, y, z, w\}=4$.

Normal Form of p, where rank $_{s}(p)=5$	Condition on Span $\{p\}$
$v^{d-4} x^{4}+v^{d-3} x^{2} y+v^{d-2} y^{2}+v^{d-2} x z+v^{d-1} w$	$v \wedge x \neq 0$
$v^{d-3} x^{3}+v^{d-2} y^{2}+v^{d-2} x z+v^{d-1} w$	$v \wedge x \wedge y \neq 0$
$v^{d-2} x^{2}+v^{d-2} y^{2}+v^{d-2} z^{2}+v^{d-1} w$	$v \wedge x \wedge y \wedge z \neq 0$

Normal Form of p, where rank $(p)=6$	Condition on Span $\{p\}$
$v^{d-5} x^{5}+v^{d-4} x^{3} y+v^{d-3} x^{2} z+v^{d-3} x y^{2}+v^{d-2} y z+v^{d-2} x w+v^{d-1} u$	$v \wedge x \neq 0$
$v^{d-4} x^{4}+v^{d-3} y^{3}+v^{d-3} x^{2} y+v^{d-2} x z+v^{d-2} y w+v^{d-1} u$	$v \wedge x \wedge y \neq 0$
$v^{d-4} x^{4}+v^{d-3} x^{2} y+v^{d-2} y^{2}+v^{d-2} z^{2}+v^{d-2} x w+v^{d-1} u$	$v \wedge x \wedge y \wedge z \neq 0$
$v^{d-3} x^{3}+v^{d-3} y^{3}+v^{d-2} x z+v^{d-2} y w+v^{d-1} u$	$v \wedge x \wedge y \neq 0$
$v^{d-3} x^{3}+v^{d-2} y^{2}+v^{d-2} z^{2}+v^{d-2} x w+v^{d-1} u$	$v \wedge x \wedge y \wedge z \neq 0$
$v^{d-2} x^{2}+v^{d-2} y^{2}+v^{d-2} z^{2}+v^{d-2} w^{2}+v^{d-1} u$	$v \wedge x \wedge y \wedge z \wedge w \neq 0$

Curves on Veronese

Given $\left[v^{d}\right] \in \nu_{d}(\mathbb{P} V)$, choose a splitting

$$
S^{d} V=\operatorname{Span}\left\{v^{d}\right\} \oplus \mathcal{T} \oplus \mathcal{N},
$$

where Span $\left\{v^{d}\right\} \oplus \mathcal{T}$ is the affine tangent space $\widehat{\mathrm{T}}_{\left[v^{d}\right]} \nu_{d}(\mathbb{P} V)$, and

$$
\mathcal{N}=\mathcal{N}_{2} \oplus \cdots \oplus \mathcal{N}_{d}
$$

Let $x(t) \subseteq \mathcal{T}$ be an analytic curve, and $\gamma(t)=v^{d}+x(t)+x_{\mathcal{N}}(t)$, where

$$
x_{\mathcal{N}}(t)=\|\left(x^{2}(t)\right)+\sum_{i=3}^{\infty} \mathbb{F}_{i}\left(x^{i}(t)\right)
$$

For each $w=v^{d-1} u \in \mathcal{T}, \mathbb{F}_{k}(w, \ldots, w)=v^{d-k} u^{k} \in \mathcal{N}_{k}$.

Normal forms of small border ranks

Theorem

Let $d \geq 2 r-1$. Given $[p] \in \sigma_{r}(X)$,

$$
p=q_{1}+\cdots+q_{k_{1}}+\cdots+q_{k_{1}+\cdots+k_{l-1}+1}+\cdots+q_{k_{1}+\cdots+k_{l}},
$$

where $\left[q_{j}\right]$ is an embedded aligned subscheme of length α_{j} supported at $\left[v_{i}^{d}\right]$ for $j \in\left\{k_{0}+\cdots+k_{i-1}+1, \ldots, k_{0}+\cdots+k_{i}\right\}, i \in\{1, \ldots, l\}$. Here $k_{0}=0, k_{1}+\cdots+k_{l} \leq r$, and

$$
q_{k_{0}+\cdots+k_{i-1}+1}+\cdots+q_{k_{0}+\cdots+k_{i}}=v_{i}^{d-\beta_{i}} w_{i}
$$

for some $w_{i} \in S^{\beta_{i}} V$, where $\beta_{i} \leq m_{i}-1$ for $i \in\{1, \ldots, /\}$.

Norm forms Continued

Theorem

Moreover,

$$
\begin{aligned}
& q_{j} \in \operatorname{Span}\left\{v_{i}^{d}, v_{i}^{d-1} u_{j, 1},\binom{d}{2} v_{i}^{d-2} u_{j, 1}^{2}+d v_{i}^{d-1} u_{j, 2}, \cdots,\right. \\
& \sum_{\theta_{j, 1}+2 \theta_{j, 2}+\cdots+\left(\alpha_{j}-1\right) \theta_{j, \alpha_{j}-1}=\alpha_{j}-1}\binom{d}{\theta_{j, 1}, \ldots, \theta_{j, \alpha_{j}-1}} \\
& \left.v_{i}^{d-\left(\theta_{j, 1}+\cdots+\theta_{j, \alpha_{j}-1}\right)} u_{j, 1}^{\theta_{j, 1}} \cdots u_{j, \alpha_{j}-1}^{\theta_{j, \alpha_{j}-1}}\right\},
\end{aligned}
$$

where $j \in\left\{k_{0}+\cdots+k_{i-1}+1, \ldots, k_{0}+\cdots+k_{i}\right\}, u_{j, 1}, \ldots, u_{j, \alpha_{j}-1} \in V$, and

$$
q_{k_{0}+\cdots+k_{i-1}+1} \wedge \cdots \wedge q_{k_{0}+\cdots+k_{i}} \neq 0
$$

for $i \in\{1, \ldots, /\}$. Without loss of generality, we may assume

$$
m_{i}-1 \geq \beta_{i}=\alpha_{k_{0}+\cdots+k_{i-1}+1} \geq \cdots \geq \alpha_{k_{0}+\cdots+k_{i}} .
$$

Thank you very much for your attention!

